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Abstract

Periodically driven oscillators of low-frequency random excitations are analyzed. Computer simulation, which was

carried out for the Duffing equation and forced vibrations of a pendulum, indicated that in these cases noise has a

stabilizing effect. Computation of Lyapunov exponents showed that by adding noise to chaotic motion the largest

Lyapunov exponent as a rule turns to negative and, consequently, the chaotic motion is annihilated.

r 2006 Elsevier Ltd. All rights reserved.
1. Introduction

In [1] nonlinear periodically driven oscillators with a random frequency of excitation were investigated.
There an unexpected result appeared—if the system has stable fixed points or a stable limit cycle then by
adding noise the motion turns regular and is terminated in some of the fixed points or on the limit cycle. In
Ref. [1] the equations of motion were integrated by the Runge–Kutta technique and noise was added at every
time step. This brings to the case of high-frequency stochastic oscillations. In the present paper the effect of
low-frequency oscillations is analyzed. A case for which the angular velocity is modeled with low-frequency
stochastic oscillations is proposed in Section 3. This model is applied in the case of the Duffing equation and
for the vibrations of a pendulum (Section 4).

An intricate question—can the noise suppress chaotic motions—arises. To give an answer to it in Section 5
Lyapunov exponents are calculated.

It is well-known that chaotic processes have the property that small numerical errors tend to grow
exponentially fast. Therefore, the question if numerical orbits of chaotic processes represent true orbits was
raised [2]. In the present paper the calculations obtained by the Runge–Kutta method were compared with the
wavelet solution [3] and a good accordance was stated. Therefore, our numerical results can be considered
trustworthy.
ee front matter r 2006 Elsevier Ltd. All rights reserved.
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2. Low-frequency excitations

Let us consider the following type of equations:

€xþ gðt;x; _xÞ ¼ sðxÞ cos½oðtÞ�; 0ptpT , (1)

where g and s are prescribed functions. We assume that the angular velocity o has the form

oðtÞ ¼ o0½1þ axðtÞ�, (2)

where xðtÞ is Gaussian noise with zero mean and standard deviation 1. The coefficient 0pap1 characterizes
the noise intensity (if a ¼ 0 the motion is deterministic). Due to the inertia of the driver stochastic oscillations
cannot change abruptly and some smoothness of the angular velocity curve must take place. In other words, a
model of low stochastic frequency is needed. It can be put together in the following way. We choose a number
of time instants Ns in which the motion is disturbed. For simplicity sake we assume that these points are
distributed uniformly over the interval t 2 ½0;T �. The instants tj at which the stochastic excitation is applied
are

tj ¼ j
T

Ns

; j ¼ 1; 2; . . . ;Ns. (3)

By replacing Eq. (3) into Eq. (2) we obtain a set of points P0 ¼ ð0;oð0ÞÞ, Pj ¼ ðtj, oðtjÞÞ; j ¼ 1; . . . ;Ns. Making
use of the cubic spline interpolation for these points we get a stochastic realization for the modeled angular
velocity ~oðtÞ. The corresponding modeled external force is

~f ðtÞ ¼ s cos½ ~oðtÞt�. (4)
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Fig. 1. Modeled angular velocity ~o and external force ~f : (a)–(b) for Ns ¼ 3, (c)–(d) for Ns ¼ 20.
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The approximation ~oðtÞ consists of the stochastic excitations only at the finite number of time instants whereas
the whole excitation is generated with the aid of cubic splines. The functions ~o and ~f for o0 ¼ 1, s ¼ 0:3,
a ¼ 0:2, Ns ¼ 6, 40 are plotted in Fig. 1.

By integrating Eq. (1) with the aid of the Runge–Kutta method we find a stochastic realization for xðtÞ. By
repeating this procedure n times we can calculate the mean xmðtÞ and standard deviation sðtÞ.

3. Two examples

Let us consider the following examples:
(i)
 Duffing equation
The Duffing equation can be presented in the form of the following system:

_x1 ¼ x2,

_x2 ¼ �px2 � qx1 � rx3
1 þ s cosox3,

_x3 ¼ 1. (5)

Here p, q, r, s are prescribed constants, dots stand for time derivatives and x3 ¼ t. To Eq. (5) belong the
boundary conditions x1ð0Þ ¼ x0;x2ð0Þ ¼ _x0. Computer simulation is carried out for p ¼ 0:25, q ¼ �1, r ¼ 1,
s ¼ 0:3, o0 ¼ 1, x0 ¼ 0, _x0 ¼ 1 (this is the case of the two-well oscillator from Fig. 2 of Ref. [1]). For the
number of points in which stochastic excitation is carried out are taken the values Ns ¼ 3 or 20. The mean
xmðtÞ and standard deviation sðtÞ are calculated from 20 stochastic realizations (as it was indicated in Ref. [1])
the motion can be terminated in one of the two foci x1 ¼ 1 and �1; for calculating xm and s only the
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Fig. 2. Duffing equation in the deterministic case: (a) time history, (b) phase diagram.
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Fig. 3. Duffing equation, stochastic case: (a)–(b) for Ns ¼ 3, (c)–(d) for Ns ¼ 20.
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realizations for which the motion terminates in x1 ¼ 1 are taken into account. Results of the computation are
plotted in Figs. 2 (deterministic case) and 3 (stochastic case for a ¼ 0:2). In Fig. 4 the longer integration time is
applied (time span is 1000 and the number of integration steps is 50,000); here Ns ¼ 60 and 400.
(ii)
 Forced vibrations of the pendulum
The equations of a driven mathematical pendulum are [1]:

_x1 ¼ x2,

_x2 ¼ � sin x1½1þ a cosðox3Þ� � bx2,

_x3 ¼ 1. (6)

Computer simulation was carried out for a ¼ 0:94, b ¼ 0:15, o0 ¼ p=2, x0 ¼ 1, _x0 ¼ 1. Time history and
phase diagram for the deterministic case are plotted in Fig. 5. It follows from this diagram that deterministic
motion is irregular, it consists of successive librations and rotations. Results for the stochastic case are
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Fig. 4. Duffing equation, stochastic case: (a)–(b) for Ns ¼ 24, (c)–(d) for Ns ¼ 400.
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Fig. 5. Driven pendulum, deterministic case: (a) time history, (b) phase diagram.
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Fig. 6. Driven pendulum, stochastic case: (a)–(b) for Ns ¼ 3, (c)–(d) for Ns ¼ 20.
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presented in Fig. 6; the mean xm and standard deviation s were calculated from 10 stochastic realizations. For
the number of perturbation points again the values Ns ¼ 3 and 20 were taken.

It follows from these calculations that noise regularizes irregular motion; this effect becomes evident already
in the case of a small number of perturbation points (Ns ¼ 3).
4. Can noise annihilate chaos?

In Ref. [1] and in Section 4 of the present paper it was shown that random frequency of excitation tends to
stabilize the system. Here the question what happens with a chaotic system after adding noise—is the system
still chaotic or is the chaos annihilated—arises. The answer can be given by applying the Lyapunov exponents.

Systems (5)–(6) have three Lyapunov exponents. Practically we need only the largest exponent: if it is
negative the motion is regular; a positive value indicates chaos. By definition Lyapunov exponents are defined
as the limits of infinite time history [4]:

l ¼ lim
t!1

1

t

PðtÞ

Pð0Þ
. (7)
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Fig. 7. The largest Lyapunov exponent versus time for the Duffing equation (2); (a) deterministic case; (b) stochastic case for Ns ¼ 3; (c)

stochastic case for Ns ¼ 20.
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Fig. 8. The largest Lyapunov exponent versus time for the pendulum (a) deterministic case; (b) stochastic case for Ns ¼ 3; (c) stochastic

case for Ns ¼ 20.
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Here PðtÞ is the length of the largest principal axis of the ellipsoid which is the deformed shape of the
infinitesimal sphere of initial conditions. In computational practice time is always limited. Thus the Lyapunov
exponent may be presented by an estimate which becomes a function of time

lðtÞ ¼
1

t

PðtÞ

Pð0Þ
. (8)

In Ref. [5] the conclusion has been made that it is necessary to use finite time Lyapunov exponents as a
measure of complexity in order to examine the unpredictability of motion.

Let us return to the examples discussed in Section 4. Making use of Wolf’s algorithm [6] the largest
Lyapunov exponent versus time is computed. The results for the Duffing equation are plotted in Fig. 7 and for
the pendulum in Fig. 8. In both cases the deterministic motion is chaotic (except a narrow region in Fig. 8a
near t ¼ 0, where the Lyapunov exponent is negative). As to stochastic motion then for twenty perturbation
points (Ns ¼ 20) the largest Lyapunov exponent is positive for small values of t; after that l is permanently
negative and the chaotic motion is suppressed. This tendency becomes evident also for Ns ¼ 3 but not in so
established form (in Fig. 8b addition of the noise reduces the Lyapunov exponent l but it nevertheless obtains
a small positive value).
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Fig. 9. Lyapunov exponents versus parameters for the Duffing equation, — deterministic case, - - - stochastic case.
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Fig. 10. Lyapunov exponents versus parameters for the driven pendulum, — deterministic case, - - - stochastic case.
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Plots of Lyapunov exponents versus parameters are also of interest. For getting such diagrams in the case of
the two examples of Section 4 all system parameters except one are fixed. Calculations were carried out for
Ns ¼ 20; a ¼ 0:2; the largest Lyapunov exponent was calculated for t ¼ 50 (Duffing equation) or t ¼ 200
(pendulum); a mean of 6 stochastic realizations is taken. The results are plotted in Figs. 9 and 10. It follows
from these calculations that in all cases the values of the largest Lyapunov coefficient are considerably
reduced. In most cases lo0 and the chaotic motion is annihilated (an exception is Fig. 10a where the motion
of the pendulum remains chaotic for a41).

5. Conclusions

A model for investigating low-frequency stochastic excitations of dynamic systems is proposed. Computer
experiments were carried out for the Duffing equation and pendulum. For the number of stochastic excitation
points was taken (Ns ¼ 3 or 20); by increasing this value we go over to the high frequency excitations, which
were discussed in Ref. [1]. The calculations showed that noise has a stabilizing effect; if the noise level a is big
enough then chaotic motions are suppressed. Calculations showed that similar results hold also for other cases
discussed in Ref. [1].
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[1] Ü. Lepik, H. Hein, On response of nonlinear oscillators with random frequency of excitation, Journal of Sound and Vibration 288

(2005) 275–292.

[2] S.M. Hammel, J.A. Yorke, C. Grebogi, Do numerical orbits of chaotic dynamical processes represent true orbits?, Journal of

Complexity 3 (1987) 136–145.
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